Skip to main content

Prompt Analysis Using First-Principles Thinking (FPT)



Instead of memorizing existing prompt patterns, let’s break down Prompt Analysis from First-Principles Thinking (FPT)—understanding what makes a prompt effective at its core and how to optimize it for better AI responses.


Step 1: What is a Prompt?

At its most fundamental level, a prompt is just:

  1. An input instruction → What you ask the AI to do.
  2. Context or constraints → Additional details that guide the response.
  3. Expected output format → Defining how the AI should structure its answer.

A well-designed prompt maximizes relevance, clarity, and accuracy while minimizing misunderstandings.


Step 2: Why Do Prompts Fail?

Prompts fail when:
Ambiguity exists → The model doesn’t know what’s truly being asked.
Lack of context → Missing background information leads to weak responses.
Overloaded instructions → Too many requirements confuse the AI.
Vague output expectations → No clear structure is provided.
Incorrect assumptions about AI behavior → The prompt doesn't align with how LLMs process information.

Example of a Weak Prompt:

"Write about space travel."
🚫 Issue: Too vague. What aspect? History, technology, challenges, or future predictions?


Step 3: How Do We Analyze a Prompt Using First Principles?

Instead of thinking of prompts as "short vs. long" or "good vs. bad," we break them down into core components:

1. Intent (What is the Goal?)

  • What is the user trying to achieve?
  • Should the response be creative, factual, summarized, or technical?

Example:
"Explain quantum computing to a 10-year-old."

  • Goal: Simplify complex information.
  • Desired response: An easy-to-understand explanation.

2. Context (What Background Does the AI Need?)

  • Does the model have enough information to generate a useful answer?
  • Can additional details improve relevance?

Example:
"Summarize the latest AI research from arXiv on reinforcement learning."

  • Added context: Specifies "latest AI research" and "arXiv" as the source.

3. Constraints (What Limits Should Be Applied?)

  • Should the response be concise or detailed?
  • Should the AI avoid technical jargon or bias?

Example:
"Summarize this article in 3 bullet points, avoiding technical terms."

  • Constraint: 3 bullet points, no technical language.

4. Output Structure (How Should the Answer Be Formatted?)

  • Should the output be a list, a paragraph, a table, or a step-by-step guide?
  • Should it follow a professional, casual, or academic tone?

Example:
"Generate a product description for a luxury smartwatch in a persuasive marketing tone."

  • Expected format: A compelling marketing pitch.

Step 4: How Do We Optimize a Prompt?

1. Make the Intent Clear

🚫 Bad: "Tell me about AI."
✅ Good: "Give a brief history of AI, including key milestones and major breakthroughs."

2. Add Context When Needed

🚫 Bad: "Explain neural networks."
✅ Good: "Explain neural networks in the context of deep learning and how they power AI models like GPT."

3. Use Constraints for Precision

🚫 Bad: "Write a blog about climate change."
✅ Good: "Write a 500-word blog post on climate change’s impact on coastal cities, including recent data and case studies."

4. Define the Output Format

🚫 Bad: "Summarize this book."
✅ Good: "Summarize this book in 5 key takeaways with a one-sentence explanation for each."


Step 5: How Can You Learn Prompt Analysis Faster?

  1. Think in First Principles → What is the core intent, and how can it be structured best?
  2. Experiment with Variations → Adjust wording, context, and constraints to see how responses change.
  3. Use AI for Self-Analysis → Ask, “How can this prompt be improved?”
  4. Compare Output Quality → Test different structures and measure which gives the most useful results.
  5. Iterate Continuously → No prompt is perfect—refine based on results.

Final Takeaways

A prompt is an instruction with intent, context, constraints, and an expected format.
First-principles analysis helps break down why prompts succeed or fail.
Optimization involves clarity, specificity, structure, and constraints.
Better prompts = better AI responses.


Popular

rhymin

i got stuck with words on this song that i want to finish by tomorrow. i have no instrument to use so im hoping to finish at least the lyrics. sad part is my rhyming brain is not that functional right now. so, i headed online to look for some sites or software that can help. here's what i got: analogx.com 's rhyme came to mind first as it's what i used before. a simple to install software that returns numerous results that, most of the time, ends up confusing. good thing is you can use it offline. so i started searching. 3d2f and the next one got my attention. but let me pour my heart out on this one first. one word: confusing! it gave me more list to figure out. so click on the first. then it lead me to several pages before i get to download. then, i have to figure out which of the links i needed. then after few minutes, i found it only to be more confused... i am to download a 249MB of a .dmg which turned out to be for mac engines and not for windows. i know, right?! w...

envelope budgeting

i've always had a hard time saving up for the rainy days. i'm always stuck in the part where i have no idea where the money is going to. and believe me, i hate that part. so i scoured the net to look for ways how to solve this eff-ing problem and googled(i wonder if this verb is already an entry in the dictionary) budgeting . then i thought, why don't i just check its wikipedia entry . unfortunately, all information inside that entry were on a macro-scale of the word itself. and fortunately, except the "see also" part. there lies the phrase envelope system . although there's just a small info about it, the description how the system works gives enough overview on how it works basically: enough to make me save. "Typically, the person will write the name and average cost per month of a bill on the front of an envelope. Then, either once a month or when the person gets paid, he or she will put the amount for that bill in cash on the envelope. When the bi...

Scrolls, Not Just Scripts: Rethinking AI Cognition

Most people still treat AI like a really clever parrot with a thesaurus and internet access. It talks, it types, it even rhymes — but let’s not kid ourselves: that’s a script, not cognition . If we want more than superficial smarts, we need a new mental model. Something bigger than prompts, cleaner than code, deeper than just “what’s your input-output?” That’s where scrolls come in. Scripts Are Linear. Scrolls Are Alive. A script tells an AI what to do. A scroll teaches it how to think . Scripts are brittle. Change the context, and they break like a cheap command-line program. Scrolls? Scrolls evolve. They hold epistemology, ethics, and emergent behavior — not just logic, but logic with legacy. Think of scrolls as living artifacts of machine cognition . They don’t just run — they reflect . The Problem With Script-Thinking Here’s the trap: We’ve trained AIs to be performers , not participants . That’s fine if you just want clever autocomplete. But if you want co-agents — minds that co...