Skip to main content

Wrestling with an Old Acer Laptop to Install ALBERT—And Winning!



You know that feeling when you take an old, battle-worn laptop and make it do something it was never meant to handle? That’s exactly what we did when we decided to install ALBERT (A Lite BERT) on an aging Acer laptop. If you’ve ever tried deep learning on old hardware, you’ll understand why this was part engineering challenge, part act of stubborn defiance.

The Challenge: ALBERT on a Senior Citizen of a Laptop

The laptop in question? A dusty old Acer machine (N3450 2.2 GHz, 4gb ram), still running strong (well, kind of) but never meant to handle modern AI workloads. The mission? Get PyTorch, Transformers, and ALBERT running on it—without CUDA, because, let’s be real, this laptop’s GPU is more suited for Minesweeper than machine learning.

Step 1: Clearing Space (Because 92% Disk Usage Ain’t It)

First order of business: making room. A quick df -h confirmed what we feared—only a few gigabytes of storage left. Old logs, forgotten downloads, and unnecessary packages were sent to digital oblivion. We even had to allocate extra space to /tmp just to prevent massive .whl files from failing mid-download.

Step 2: Installing PyTorch and Transformers (Not Without a Fight)

Installing PyTorch should have been easy, but nope. The first attempt ended with a familiar [Errno 28] No space left on device error. After a bit of cursing and some clever pip --no-cache-dir installs, we finally got PyTorch 2.6.0+cu124 up and running—minus CUDA, of course.

Next up: Transformers. This should have been smooth sailing, but Python had other plans. Running our import transformers test script threw a ModuleNotFoundError. Turns out, sentencepiece (a required dependency) didn’t install correctly. The culprit? Failed to build installable wheels for some pyproject.toml based projects (sentencepiece).

We switched gears, manually installed sentencepiece, and—drumroll—it finally worked! At this point, the laptop had already earned a medal for resilience.

Step 3: Running ALBERT on CPU (The Moment of Truth)

With everything installed, it was time for the grand test:

from transformers import AlbertTokenizer, AlbertModel
import torch

tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
model = AlbertModel.from_pretrained("albert-base-v2")

text = "This old Acer laptop is a legend."
inputs = tokenizer(text, return_tensors="pt")
output = model(**inputs)

print(output.last_hidden_state)

Watching the model download and process our test sentence felt like a scene from an underdog sports movie. Would it crash? Would it catch fire? Would it just refuse to work? None of the above! ALBERT, against all odds, successfully generated embeddings for our text.

Final Thoughts: A Victory for Old Hardware

The takeaway? You don’t need cutting-edge hardware to experiment with AI. Sure, this setup won’t be training billion-parameter models anytime soon, but for learning, testing, and small-scale experimentation, it’s proof that old machines still have some life left in them.

So, if you have an aging laptop lying around, give it a second chance. It might just surprise you. And if it doesn’t, well… at least you tried. 😉

Popular

Understanding Large Language Models (LLMs) Using First-Principles Thinking

Instead of memorizing AI jargon, let’s break down Large Language Models (LLMs) from first principles —starting with the most fundamental questions and building up from there. Step 1: What is Intelligence? Before we talk about AI, let’s define intelligence at the most basic level: Intelligence is the ability to understand, learn, and generate meaningful responses based on patterns. Humans do this by processing language, recognizing patterns, and forming logical connections. Now, let’s apply this to machines. Step 2: Can Machines Imitate Intelligence? If intelligence is about recognizing patterns and generating responses, then in theory, a machine can simulate intelligence by: Storing and processing vast amounts of text. Finding statistical patterns in language. Predicting what comes next based on probability. This leads us to the core function of LLMs : They don’t think like humans, but they generate human-like text by learning from data. Step 3: How Do LLMs Wor...

envelope budgeting

i've always had a hard time saving up for the rainy days. i'm always stuck in the part where i have no idea where the money is going to. and believe me, i hate that part. so i scoured the net to look for ways how to solve this eff-ing problem and googled(i wonder if this verb is already an entry in the dictionary) budgeting . then i thought, why don't i just check its wikipedia entry . unfortunately, all information inside that entry were on a macro-scale of the word itself. and fortunately, except the "see also" part. there lies the phrase envelope system . although there's just a small info about it, the description how the system works gives enough overview on how it works basically: enough to make me save. "Typically, the person will write the name and average cost per month of a bill on the front of an envelope. Then, either once a month or when the person gets paid, he or she will put the amount for that bill in cash on the envelope. When the bi...

categorize: save money

want a reason to save? when i buy, i categorized my purchases as either: 1. necessary or 2. not necessary(others) easy as that. the tricky part is how to determine whether what i'm buying is necessary or not. it should be as simple as a yes or no question, but some factors complicate the decision making process. whatever those factors are it all boils down to whether it is needed or not. let's use phone as a sample. i would say i don't need a phone to live or i wont die(literally) if i don't have a phone. but if i have a kid and i want to keep track of him because i will die of worrying, then that's a need. now, think. what are the things that you can't live without? don't cheat. and, only by that you will be able to save.