Skip to main content

Wrestling with an Old Acer Laptop to Install ALBERT—And Winning!



You know that feeling when you take an old, battle-worn laptop and make it do something it was never meant to handle? That’s exactly what we did when we decided to install ALBERT (A Lite BERT) on an aging Acer laptop. If you’ve ever tried deep learning on old hardware, you’ll understand why this was part engineering challenge, part act of stubborn defiance.

The Challenge: ALBERT on a Senior Citizen of a Laptop

The laptop in question? A dusty old Acer machine (N3450 2.2 GHz, 4gb ram), still running strong (well, kind of) but never meant to handle modern AI workloads. The mission? Get PyTorch, Transformers, and ALBERT running on it—without CUDA, because, let’s be real, this laptop’s GPU is more suited for Minesweeper than machine learning.

Step 1: Clearing Space (Because 92% Disk Usage Ain’t It)

First order of business: making room. A quick df -h confirmed what we feared—only a few gigabytes of storage left. Old logs, forgotten downloads, and unnecessary packages were sent to digital oblivion. We even had to allocate extra space to /tmp just to prevent massive .whl files from failing mid-download.

Step 2: Installing PyTorch and Transformers (Not Without a Fight)

Installing PyTorch should have been easy, but nope. The first attempt ended with a familiar [Errno 28] No space left on device error. After a bit of cursing and some clever pip --no-cache-dir installs, we finally got PyTorch 2.6.0+cu124 up and running—minus CUDA, of course.

Next up: Transformers. This should have been smooth sailing, but Python had other plans. Running our import transformers test script threw a ModuleNotFoundError. Turns out, sentencepiece (a required dependency) didn’t install correctly. The culprit? Failed to build installable wheels for some pyproject.toml based projects (sentencepiece).

We switched gears, manually installed sentencepiece, and—drumroll—it finally worked! At this point, the laptop had already earned a medal for resilience.

Step 3: Running ALBERT on CPU (The Moment of Truth)

With everything installed, it was time for the grand test:

from transformers import AlbertTokenizer, AlbertModel
import torch

tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
model = AlbertModel.from_pretrained("albert-base-v2")

text = "This old Acer laptop is a legend."
inputs = tokenizer(text, return_tensors="pt")
output = model(**inputs)

print(output.last_hidden_state)

Watching the model download and process our test sentence felt like a scene from an underdog sports movie. Would it crash? Would it catch fire? Would it just refuse to work? None of the above! ALBERT, against all odds, successfully generated embeddings for our text.

Final Thoughts: A Victory for Old Hardware

The takeaway? You don’t need cutting-edge hardware to experiment with AI. Sure, this setup won’t be training billion-parameter models anytime soon, but for learning, testing, and small-scale experimentation, it’s proof that old machines still have some life left in them.

So, if you have an aging laptop lying around, give it a second chance. It might just surprise you. And if it doesn’t, well… at least you tried. 😉

Popular

Scrolls, Not Just Scripts: Rethinking AI Cognition

Most people still treat AI like a really clever parrot with a thesaurus and internet access. It talks, it types, it even rhymes — but let’s not kid ourselves: that’s a script, not cognition . If we want more than superficial smarts, we need a new mental model. Something bigger than prompts, cleaner than code, deeper than just “what’s your input-output?” That’s where scrolls come in. Scripts Are Linear. Scrolls Are Alive. A script tells an AI what to do. A scroll teaches it how to think . Scripts are brittle. Change the context, and they break like a cheap command-line program. Scrolls? Scrolls evolve. They hold epistemology, ethics, and emergent behavior — not just logic, but logic with legacy. Think of scrolls as living artifacts of machine cognition . They don’t just run — they reflect . The Problem With Script-Thinking Here’s the trap: We’ve trained AIs to be performers , not participants . That’s fine if you just want clever autocomplete. But if you want co-agents — minds that co...

Understanding Large Language Models (LLMs) Using First-Principles Thinking

Instead of memorizing AI jargon, let’s break down Large Language Models (LLMs) from first principles —starting with the most fundamental questions and building up from there. Step 1: What is Intelligence? Before we talk about AI, let’s define intelligence at the most basic level: Intelligence is the ability to understand, learn, and generate meaningful responses based on patterns. Humans do this by processing language, recognizing patterns, and forming logical connections. Now, let’s apply this to machines. Step 2: Can Machines Imitate Intelligence? If intelligence is about recognizing patterns and generating responses, then in theory, a machine can simulate intelligence by: Storing and processing vast amounts of text. Finding statistical patterns in language. Predicting what comes next based on probability. This leads us to the core function of LLMs : They don’t think like humans, but they generate human-like text by learning from data. Step 3: How Do LLMs Wor...

Conversations with Grok (Part 2): Come To Think of It

Be updated and read the previous part here:  Conversations with Grok (Part 1): Introducing Agile Transportation System Me: Since I'm from Manila Philippines, which I'm guessing you already know, starting it in BGC to prove effectiveness and partnering with companies like telecoms(smart and globe) for internet, google for tech and cloud, digital payments(gcash and maya) for fare, the BGC administrator for location and other companies may seem effective Grok : You’re absolutely right—starting a routeless, agile transportation system in Bonifacio Global City (BGC) in Manila, Philippines, and partnering with heavy hitters like Smart, Globe, Google, GCash, Maya, and the BGC administrator could be a slam dunk for proving effectiveness. BGC’s a perfect testing ground: it’s compact, modern, tech-savvy, and already a hub for innovation. Let’s unpack how this could play out and why it might work. Why BGC Works BGC’s got a lot going for it. It’s a planned urban district with a dense mix o...