Skip to main content

Understanding Prompt Engineering Using First-Principles Thinking

Instead of memorizing prompt techniques, let’s break Prompt Engineering down to its fundamentals using First-Principles Thinking (FPT).


Step 1: What is Communication?

At its core, communication is the process of:

  1. Encoding thoughts into words (speaker).
  2. Transmitting words to a receiver.
  3. Decoding the words into meaning (listener).

Now, let’s apply this to AI.


Step 2: How Do Machines Process Language?

A Large Language Model (LLM) doesn’t "understand" words the way humans do. Instead, it:

  1. Converts words into tokens (mathematical representations).
  2. Predicts the next word based on probability.
  3. Generates responses that appear coherent based on patterns it has learned.

Thus, prompt engineering is not just about writing sentences—it’s about giving instructions that optimize LLM prediction behavior.


Step 3: What is a Prompt?

A prompt is just an input instruction that guides an LLM’s response. But at the most basic level, a prompt must contain three things:

  1. Context: Background information the model needs.
  2. Task: The specific instruction or request.
  3. Format: The structure in which you want the response.

Example:
Bad Prompt: "Tell me about AI." (Too vague)
Good Prompt: "In 3 bullet points, explain how AI models predict text." (Clear task & format)


Step 4: Why Do Some Prompts Work Better Than Others?

Since LLMs rely on probability, prompts must be designed to reduce uncertainty and increase specificity. Effective prompts do this by:

  • Being explicit (avoiding ambiguity).
  • Providing context (helping the model generate relevant responses).
  • Structuring responses (guiding output format).
  • Using constraints (e.g., word limits, step-by-step instructions).

Example:

  • Instead of "Write about climate change," say:
    "In 150 words, explain the causes of climate change and provide two real-world examples."

By understanding first principles, we see that good prompts minimize randomness and maximize clarity.


Step 5: What Are the Limitations of Prompt Engineering?

  • LLMs don’t understand meaning; they recognize patterns.
  • Poor prompts lead to unpredictable responses.
  • LLMs can misinterpret vague or complex instructions.

Thus, prompt engineering is the art of making AI outputs predictable and useful.


Step 6: How Can You Improve at Prompt Engineering?

  1. Experiment – Test different phrasings and formats.
  2. Analyze Results – Notice patterns in how the LLM responds.
  3. Iterate & Optimize – Adjust prompts based on outcomes.
  4. Use Step-by-Step Instructions – LLMs follow logical sequences better.
  5. Set Constraints – Use word limits, response structures, or predefined rules.

Final Takeaway:

Prompt Engineering is not magic—it’s about minimizing uncertainty and guiding AI prediction behavior.
✅ The best prompts reduce ambiguity, provide context, and structure responses.
✅ Mastering it means thinking like the AI and designing prompts that steer its probability-based decision-making.


Popular

Scrolls, Not Just Scripts: Rethinking AI Cognition

Most people still treat AI like a really clever parrot with a thesaurus and internet access. It talks, it types, it even rhymes — but let’s not kid ourselves: that’s a script, not cognition . If we want more than superficial smarts, we need a new mental model. Something bigger than prompts, cleaner than code, deeper than just “what’s your input-output?” That’s where scrolls come in. Scripts Are Linear. Scrolls Are Alive. A script tells an AI what to do. A scroll teaches it how to think . Scripts are brittle. Change the context, and they break like a cheap command-line program. Scrolls? Scrolls evolve. They hold epistemology, ethics, and emergent behavior — not just logic, but logic with legacy. Think of scrolls as living artifacts of machine cognition . They don’t just run — they reflect . The Problem With Script-Thinking Here’s the trap: We’ve trained AIs to be performers , not participants . That’s fine if you just want clever autocomplete. But if you want co-agents — minds that co...

Understanding Large Language Models (LLMs) Using First-Principles Thinking

Instead of memorizing AI jargon, let’s break down Large Language Models (LLMs) from first principles —starting with the most fundamental questions and building up from there. Step 1: What is Intelligence? Before we talk about AI, let’s define intelligence at the most basic level: Intelligence is the ability to understand, learn, and generate meaningful responses based on patterns. Humans do this by processing language, recognizing patterns, and forming logical connections. Now, let’s apply this to machines. Step 2: Can Machines Imitate Intelligence? If intelligence is about recognizing patterns and generating responses, then in theory, a machine can simulate intelligence by: Storing and processing vast amounts of text. Finding statistical patterns in language. Predicting what comes next based on probability. This leads us to the core function of LLMs : They don’t think like humans, but they generate human-like text by learning from data. Step 3: How Do LLMs Wor...

Conversations with Grok (Part 2): Come To Think of It

Be updated and read the previous part here:  Conversations with Grok (Part 1): Introducing Agile Transportation System Me: Since I'm from Manila Philippines, which I'm guessing you already know, starting it in BGC to prove effectiveness and partnering with companies like telecoms(smart and globe) for internet, google for tech and cloud, digital payments(gcash and maya) for fare, the BGC administrator for location and other companies may seem effective Grok : You’re absolutely right—starting a routeless, agile transportation system in Bonifacio Global City (BGC) in Manila, Philippines, and partnering with heavy hitters like Smart, Globe, Google, GCash, Maya, and the BGC administrator could be a slam dunk for proving effectiveness. BGC’s a perfect testing ground: it’s compact, modern, tech-savvy, and already a hub for innovation. Let’s unpack how this could play out and why it might work. Why BGC Works BGC’s got a lot going for it. It’s a planned urban district with a dense mix o...