Skip to main content

Understanding Large Language Models (LLMs) Using First-Principles Thinking

Instead of memorizing AI jargon, let’s break down Large Language Models (LLMs) from first principles—starting with the most fundamental questions and building up from there.


Step 1: What is Intelligence?

Before we talk about AI, let’s define intelligence at the most basic level:

  • Intelligence is the ability to understand, learn, and generate meaningful responses based on patterns.
  • Humans do this by processing language, recognizing patterns, and forming logical connections.

Now, let’s apply this to machines.


Step 2: Can Machines Imitate Intelligence?

If intelligence is about recognizing patterns and generating responses, then in theory, a machine can simulate intelligence by:

  1. Storing and processing vast amounts of text.
  2. Finding statistical patterns in language.
  3. Predicting what comes next based on probability.

This leads us to the core function of LLMs: They don’t think like humans, but they generate human-like text by learning from data.


Step 3: How Do LLMs Work?

Now, let’s break down how an LLM actually functions in first principles:

  1. Data Collection: The model is trained on massive amounts of text (books, articles, code, etc.).
  2. Tokenization: Text is broken down into small pieces called "tokens" (words or parts of words).
  3. Pattern Learning: The model learns how words and phrases relate to each other statistically.
  4. Probability-Based Predictions: When you type a prompt, the LLM predicts the most likely next word based on learned patterns.
  5. Fine-Tuning & Feedback: The model improves over time based on human feedback and additional training.

At its core, an LLM is just a super-advanced pattern recognizer, not a true thinker.


Step 4: What Are the Limitations?

By applying first principles, we can see the weaknesses of LLMs:

  • No True Understanding: They don’t “know” anything—just predict based on patterns.
  • Bias in Data: Since models learn from human data, they inherit biases.
  • Limited Reasoning: LLMs struggle with complex logic and deep reasoning.

These insights help learners understand what LLMs can and cannot do.


Step 5: Practical Takeaways for a Learner

If you're learning about LLMs, here’s what truly matters:
✅ Think of LLMs as probability engines, not thinking machines.
✅ Focus on how they generate responses, not just their output.
✅ Understand their limitations to use them effectively.

By using First-Principles Thinking, you don’t just memorize AI concepts—you deeply understand them.

Popular

Institutional Value Index (IVI)

Formal Definition      The Institutional Value Index (IVI) is a multidimensional metric system that quantifies the vitality, coherence, and transmissibility of belief-based value within and around an institution.      It measures the degree to which an organization’s philosophy, behavior, and symbolic expression remain aligned across internal and external ecosystems, thereby predicting its capacity for long-term resilience and cultural endurance. 1. Conceptual Essence      Where the IVC defines how value flows, and the CCV System defines where it originates and reflects, the IVI defines how strong and stable that flow is.      In essence, IVI is the heartbeat of institutional meaning — converting the intangible (belief, trust, resonance) into a numerical signature that can be compared, tracked, and improved. 2. Structural Composition      The IVI aggregates six value strata (from the IVC) into ...

Company-Client-Value (CCV) System

Formal Definition      The Company–Client–Value (CCV) System is a relational framework that defines the dynamic equilibrium between the origin of belief (the company), the recipient and mirror of belief (the client), and the shared symbolic core (the value).      It models how institutional meaning is co-created, transmitted, and stabilized between organizations and their external constituencies, forming the fundamental triad that underlies every economic, cultural, or ideological ecosystem. 1. Conceptual Essence      The CCV system asserts that all sustainable institutions are founded on a shared value field;  an implicit agreement of meaning between producer and participant.      The company originates and expresses a value; the client perceives, validates, and reciprocates it. Between them stands the value itself,  the symbolic medium that both sides recognize as true.      When all three p...

linux firsts

i came across the linux timeline in wikipedia and learned that there are three major distros(distributions) where most of them came from. debian slackware redhat ubuntu, KNOPPIX and gibraltar are some of the distros that were based from debian. i would say it's a cross between slackware and redhat - and that's based from some of my research. i just dont have time to post details madriva, fedora and the "philippines distro" bayanihan are based from redhat. a very corporate feel and stable distro if you ask me slackware, which was the basis of openSuSE and vector, is a hobbyist distro basing from its history. althought, its support and community are as stable.